a2 United States Patent

Snow et al.

US009477927B2

10) Patent No.: US 9,477,927 B2
45) Date of Patent: Oct. 25,2016

(54) AUTOMATIC TEST GENERATION FOR
DECISION TABLE BASED RULES

(71) Applicants:Paul Snow, Austin, TX (US); Bhushan
Naniwadekar, Austin, TX (US)

(72) Inventors: Paul Snow, Austin, TX (US); Bhushan
Naniwadekar, Austin, TX (US)

(73) Assignee: SOURCEPULSE LLC, Austin, TX
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 243 days.

(21) Appl. No.: 14/058,269

(22) Filed: Oct. 20, 2013

(65) Prior Publication Data
US 2014/0143198 Al May 22, 2014

Related U.S. Application Data
(60) Provisional application No. 61/716,516, filed on Oct.

20, 2012.
(51) Int. CL

GOGN 5/00 (2006.01)

G06Q 10/04 (2012.01)
(52) US.CL

CPC oo GO6N 5/006 (2013.01); GO6Q 10/04

(2013.01)

300 —~ 302 —\ Receiving

304 —\ Converting

(58) Field of Classification Search
CPC oottt GO6N 5/003
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2003/0101152 A1* 52003 Hicksccoooovvvinne GO6N 5/022
706/45
2008/0196002 Al* 82008 Koster GO6N 5/022
717/106
2009/0138415 Al* 5/2009 Lancaster GO6N 5/04
706/11
2010/0175052 Al1* 7/2010 Prasad ... GO6F 11/3684
717/128
2012/0158628 Al* 6/2012 Junker GO6F 19/00
706/14

* cited by examiner

Primary Examiner — Alan Chen

(74) Attorney, Agent, or Firm — Cesari & Reed LLP;
Kirk A. Cesari; Christian W. Best

(57) ABSTRACT

Systems and methods are disclosed for testing decision
table-based rules. In an embodiment, a memory device may
store instructions that cause a processor to perform a method
comprising receiving one or more constraints for a set of
data attributes, generating a structured data set of the data
attributes having values based on the one or more con-
straints, and providing the structured data set to a decision
table-based rule set.

19 Claims, 4 Drawing Sheets

attribute
constraints

!

constraints into
valid syntax

306
Y

Generating a data set

312

A

based on the
constraints

!

constraints

308 -
Modify \ Providing the

datasettoa
rules engine

A

314 ‘\

Modify
constraints based
on rules engine
output?

End

U.S. Patent Oct. 25, 2016 Sheet 1 of 4 US 9,477,927 B2

100 —\‘

114 \ CONSTRAINTS
on attributes & structures

'

116
‘\ COMPILER INTERFACE

| “

102
\ TEST GENERATION UNIT COLLECTED DATA
112
— > \
ATTRIBUTE < DATA GENERATION
GENERATOR RULES

110

104 ‘\

118 ‘\
GENERATED TEST CASE
Structured data set of collected
Resulis
Rule Set or generated attributes based
A \ on specified constraints

120 106 —\ l

RULES ENGINE

Decision Table
Rule Set

FIG. 1

US 9,477,927 B2

Sheet 2 of 4

Oct. 25, 2016

U.S. Patent

e O

SIRE MRUNR
BU SUE SWUOI § - SIBR IUSIND USOMI 938N B 08N

FRUOIBNG Sl D pepurd

T HOOG SiL] 13} 559008 #er) 8P srep wbey | yong usdo
0¥ peps sefim saled @y oG
GoL 1008 08 OF 0 0 8UG 98 Pl OU 8§ DY
watasrd uss
BUR SARD IO JSQUINLE SY3 U0 Py solays panyAen HOOG
uRjdEyd SU O 1Uenied OO 19el B 9% MBARIT U DRMBIA
4 JOUED Jey weRieus Ryt Awiss saepcheyn pepaXe S
SRUG & OF 7 1O ARRS IBjdeyn Mou e 88N NOUK SUL U SIOMIBLD aut faie aEday NGOG
SIDYSHG 1SINbaL S JO SR 95N SBUYSHGNT 500G S L SRty Bysgand g
IBLOENG Byl ogE
apew suomep 04 BuMort Arue SHEN RGBT
SNOD Banbed (€ 104 Agug 4000 Jed0 MU € 350 SsEssse
FEEBUOIEID ARG BO0g § ssamE ouy A SyjeassuEdn | ERBORGT
SLOTASALY P8 QLOT/LOALO UaiaiRq S180 © A8 BIEP JUBUNO BY L apen arep]G ssepboi
(g7, 8obel 10 Jequnu $)00Y R4:; O} | Uil 98[) FABIA,
O seusys Jount e ebied oy sofians semany abed worde:
BEBOy posenbon Ul Aoy UEFOOY Mmole warba
apad Xeu 83 nY oL
S SHULISTYD RUY JOUAL SR L Buins BERV0E wanbs
SR00Y BL) O] H00G S PRy
ESHUC &t . .
- AHRIR YO NS € ost HOOY WRLNG Bl 51 S A Aoy Esnbal
R ISUITIEN0 FAG0 ¢ osh jsenbas
gy BUBBAL BBUAISIN DU SESIYY Aius HALOIRTG wonbss
SR G OF £ IO Aree Joysngnd sou g 88 0S5 199) S1tg Ui SHD0G iR
30} S30usgqnd JO 18 RijY S S Aese SrUSHNG sanhod
SOUHL § Of & WOl} ALus #0004 MEl & 981 HEES 159
BRgy L SO0 51 18Y SUY S Reise EX300% wonbm

US 9,477,927 B2

Sheet 3 of 4

Oct. 25, 2016

U.S. Patent

qc "Ol1Ad

Sung e e SHEIBUOD
Suris ABABIE 1 UEIRU0D
Buing FREUIMNS HUBIRUOD
Gl OF A1 Spli i) WOl %0 WA OU 5 O
WA G RRRONE S
seuropno s sebsd o smauinn Ercaletn sy ebied ssygnd
Gl OF AN SRl GL U B0y BRIV
RAREA O} PERMOHR B 8UIOPSND
S} SISHRYD SO RN ARNGH oy e savysygrd
afed WMS WO USUn S IR | BRY
e+ afad LR NeOR Uuad0 AYs 981 fogunyy 3h8q wBay OpBL gbed
0F RUB (] uoomien SRt 2 950 1 epdeyo sy v solisg 40 sequnn saboun sobed 0 equinu ndeys
Babad 0 SNt RO
Syt g sefad o egu andeys e pry
selud 0 IBqUIng Ly
+ 9a0ed IO TIBIRUNT ROOY By S8
tedeye ey o efed wen refspn sited pug e
L+ 8a0ed 10 BRUINUER00G B #en ey wg o sbed 4 seBaps sfed by saydenn
{38 pegs s efied " aune | yoon uedo
NOOG RO 591 GITTEIPENY
S HUOIEIT BUY YOO 2 Ay sooq 1y o
{otet pus oy ‘shad baq | uoswgiy 6 s&unu abed
i o 0B © 6 Ay WOy SIIdaNT IR 280 PESSanon — -
i i ; T S£1] WU0Ens s ek e fene paamens siadend | ooy usdo
SH Sl SEBed i LD OUl AliUS SUED tADY & B[] CIRIRANG
A%} parasia safed 16 3811 Aeuw sgfed | oo uwedo
o 7 % e X T e Ny 057 .
{0/ oobad ¥ JOOLUME) DUE) UDODWST Sing B 350 pEsLRONG B4t o abRuaaId
futiesusD 58 Ag pasey sliapy | pear sebed o unos | uooy usda

U.S. Patent

300 w

Oct. 25, 2016

Sheet 4 of 4

302 ‘\

Receiving
attribute
constraints

!

304 \

Converting
constraints into
valid syntax

]

Generating a data set

—>

based on the
constraints

!

312 \
Modify

constraints

308 ‘\

Providing the
datasettoa
rules engine

310

Yes

constrainis based
on rules engine

Modify

output?

314\

End

FIG. 3

US 9,477,927 B2

US 9,477,927 B2

1
AUTOMATIC TEST GENERATION FOR
DECISION TABLE BASED RULES

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application claims priority to U.S. provisional
patent application Ser. No. 61/716,516, filed Oct. 20, 2012,
entitled “Automatic Test Generation for Decision Table
based Rules”, the contents of which are hereby incorporated
by reference in their entirety.

BACKGROUND

This disclosure relates to decision table based rule sets,
and particularly to testing methods for decision table based
rules.

SUMMARY

In an embodiment, a memory device may store instruc-
tions that cause a processor to perform a method comprising
receiving one or more constraints for a set of data attributes,
generating a structured data set of the data attributes having
values based on the one or more constraints, and providing
the structured data set to a decision table-based rule set.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an illustrative embodiment of a
system for automatic test generation for decision table based
rules;

FIGS. 2a and 26 are tables of another illustrative embodi-
ment of a system for automatic test generation for decision
table based rules; and

FIG. 3 is a flowchart of a method of an illustrative
embodiment of a system for automatic test generation for
decision table based rules.

DETAILED DESCRIPTION

In the following detailed description of the embodiments,
reference is made to the accompanying drawings which
form a part hereof, and in which are shown by way of
illustration of specific embodiments. It is to be understood
that other embodiments may be utilized and structural
changes may be made without departing from the scope of
the present disclosure. It is also to be understood that
features of the various embodiments can be combined,
separated, exchanged, or removed without departing from
the scope of the present disclosure.

Rules engines, such as for executing business rules or
other rule-based processes, may be constructed using deci-
sion tables. Decision Tables can come in many forms, but
almost all of them consume structured data. Structured Data
can be viewed as a set of tables and columns in a database,
or a set of data structures in a modern programming lan-
guage such as C, C++, Java, C#, COBOL, etc. Such data
structures and relational databases can group related infor-
mation together. In an example embodiment, a database may
store records for numerous clients, and a group of related
fields for each “client” may include a name, address, birth
date, etc.

For example, these data structures can represent Cases
with Clients who have various incomes. A Case can have a
mailing address and a physical address. Clients could be
enrolled in a number of programs. Clients might have been

20

30

35

40

45

2

reported for an infraction against the rules of a program.
Each of these things (i.e. Case, Client, addresses, programs,
infractions, etc.) can be represented as a structure with a set
of attributes, both calculated (per a set of rules) and col-
lected.

For another example, an Income Tax form can be repre-
sented by a set of forms (1040, 1040 Schedule A, 1040
Schedule B, W-2, TD F 90-22.1, 1099, etc.). Each form can
have a set of attributes, both calculated (per a set of rules)
and collected. For example, collected data may include a
reported gross income, while calculated data may include
the adjusted gross income based upon the reported gross
income along with appropriate financial deductions and
other factors.

A rule set of a rules engine may have a multitude of
branching decision points, based on the values of structured
data fields used as input to the rules engine. Complex rule
sets may have hundreds or thousands of potential decision
points or outcomes, each of which may desirably be tested
to ensure proper functioning of the rule set. In some
instances, each decision point or outcome should be tested
multiple times with a variety of data field values. An
automatic test generation system can be used to create a set
of test cases to test a rule set for proper functionality. Test
cases may include a plurality of attributes and structures, the
values of which need to be defined in order to test the many
paths through a rule set.

Accordingly, constraints on the type or range of data
permissible for each attribute or structure may be set. The
constraints on each attribute and structure may be defined,
such as by a user, using “natural language” syntax, e.g. very
English-like statements, using programming language syn-
tax, or any combination thereof. The language used can be
extended in ways that allows nearly unlimited flexibility. For
example, an interface to a compiler may be used to translate
input into the appropriate compiler language. The compiler
or interface may be user-provided, part of the automatic test
generation system, or otherwise provided. The translation
interface can allow constraints to be expressed in anything
from a very Java-like syntax, to a very English-like syntax.
The constraints can be augmented with some process rules
(for setting up collections of structured data, relationships
between structured data, etc.).

As discussed, the automatic test generation system can
build a set of data to be provided to a rule set of a rules
engine. The test cases can be populated with collected data
(e.g. actual customer names, addresses, etc. collected from
a source), originally generated (e.g. randomly generated
values, or data picked from a fabricated collection of pos-
sible values for each data field), or any combination thereof.
The generated test set of data can be edited. The rules can be
referenced to guide the resolution of constraints in order to
trigger particular paths. When using the rules to guide
constraint resolution, the paths through the rules chosen can
be specified manually or automatically. For example, the
automatic test generation system can be configured to auto-
matically generate a set of data which will test all or a subset
of paths through a rule set, a particular path or paths may be
specifically selected by a user, or a combination thereof.

The generation of a test case may involve constructing a
set of structures such that the structures and their attributes
represent a possible input to a set of rules. To do so, a set of
cascading constraints on the attributes may be set. The
automatic test generation system can walk through these
constraints and select values that meet the criteria. Further,
since the rules can be in Decision Table format, the test
generation system can walk through the rules, resolving

US 9,477,927 B2

3

constraints such that particular paths through the rules are
taken. As stated, these paths can be chosen manually, or
automatically.

Generated tests can provide a number of uses. A set of
generated tests can allow a rules editor to quickly build a set
of tests to run against a rule set under development. A
generated test can be the starting point for building a test that
targets a particular set of rules. Since much of a test may be
tedious to build manually, flushing out most of the details
automatically can save a large amount of time. A set of
generated tests can provide a potentially large and diverse
set of data against which the performance of a rule set can
be measured.

In an example embodiment, a rules engine may require
testing. The rules engine can operate based on a decision
table configured based on a rule set. The decision table may
operate as a branching decision tree, with different paths
through the tree taken based on the values of attributes in
structured data sets provided to the rules engine as inputs.
For example, a customer living in Vermont may result in a
first set of options, while a customer living in California may
result in a second set of options. Complex rule sets may
result in many potential paths through the decision tree for
testing.

Turning now to FIG. 1, a diagram of an illustrative
embodiment of a system for automatic test generation for
decision table based rules is depicted and generally desig-
nated 100. In order to test the rules engine, a test generation
unit (TGU) 102 may be employed. The TGU 102 may be
designed to output test cases 104 of structured data to the
rules engine 106 to test the functionality of the rules engine
106 or various paths through the rules engine decision trees.
The structured data sets may be populated with collected
data 108, such as from a database, as well as calculated or
generated data. For example, some attributes in a structured
data set may have a value range, such as between 0 and 200.
A set of data generation rules 110 defining these ranges for
the attributes can be provided to an attribute generating node
112 of the test generation unit 102, allowing the TGU 102 to
generate random or specific attributes within the appropriate
range for use in a generated test case. Other attributes may
be populated based data selected from a provided collected
data set 108.

In some examples, the TGU 102 could be employed for
boundary-testing, such as using values at the extreme limits
of a value range, or just inside or outside of the appropriate
value range, to determine how a rules engine will respond to
extreme or potentially unacceptable inputs. The attribute
generation node 112 may be configured to automatically
generate boundary-testing data based on specified value
ranges.

The TGU may use specified constraints 114 in order to
select or generate data with which to populate a generated
test case 104. For example, if a user wishes to test certain
paths or attribute values in the rules engine 106, the user may
specify constraints 114 to use the appropriate attribute
values or follow a certain path. Constraints 114 may be
entered through a compiler interface 116 that interprets the
constraints 114 and transforms them into code or instruc-
tions for the TGU 102. The compiler interface 116 may
allow for low-level instructions similar to computer instruc-
tions, or high-level instructions as with natural language
processing. In some examples, specified constraints 114 may
be broad, such as testing every path once, or they may be
specific such as testing a specific path, or testing all potential
paths for clients living in California.

10

15

20

25

30

35

40

45

50

55

60

65

4

Constraints 114 entered by a user can be augmented or
implemented using addition information available to the
TGU 102. For example, the TGU 102 can also reference the
rule set 118 from the rules engine 106 in order to determine
constraints necessary to trigger a particular path. A user may
also be provided access to the rules set 118. Paths through
the rules can be selected manually or automatically. In an
illustrative embodiment, a user may specity that all paths of
the rules engine 106 should be tested. The TGU 102 may
consult the rule set 118 to determine triggering values for
decision points, and generate a test case 104 using appro-
priate collected data 108 or data generation rules 110 to
trigger all decision points.

On some embodiments, the results 120 of a given gener-
ated test case 104 or set of test cases can be returned to the
TGU 102 and used to formulate additional test cases. For
example, a broad set of constraints 114 may result in a large
number of test cases 104. If some of the test cases 104 result
in unexpected or improper outputs, the TGU 102 may
formulate additional test cases 104 to further test specific
paths that may be the cause of the unexpected or improper
outputs.

FIGS. 2a and 25 are tables of another illustrative embodi-
ment of a system for automatic test generation for decision
table based rules. In particular, the table depicts an example
test generation specification, including various attribute
fields and data entity types. The example may be directed
towards a rule set for a book-borrowing system. In the
depicted example, a set of data entities are shown, with each
entity having a number of attributes which comprise the
entity. So a “book™ entity may have attribute fields for a
publisher, chapters, excluded chapters, a day limit, and a
number of pages. Attributes may be different types of data
structures. For example, the “chapters™ attribute may be an
array containing a listing of the chapters in the book, the
“day limit” attribute may itself be a simple integer value, and
the “publisher” attribute may be another entity with its own
set of attributes. The attributes may further have sub-types.
The comment field may describe what information each
attribute covers or is directed to.

The Test Generation field may include data generation
rules, constraints, or with what data the attributes should be
populated. For example, the “request” entity may cover a
test case, with the Test Generation field indicating how the
attributes for the “request” entity should be populated. This
may cause a test generating system to go down the list and
create test entities.

For example, a test generation system may reach the
“books” attribute of the request entity, and see that it should
fill the books array with five or six new “book” entities. For
each book entity, the test generation system may then create
the proper “book™ entity attributes. For example, it may
create a “chapters” array, and populate with the two to five
“chapter” entities as defined within the specification. For the
chapter entity’s “number of pages™ attribute, the test gen-
eration system may generate a random number between 10
and 30, as described in the test generation field. Other
attributes are provided with different equations, or refer-
ences to other attributes that should be used to populate the
field. These might include directions to pull a number of
records from a database of collected data, for example.

A test generation specification can be entered into an
automatic test generation system through an interface as a
set of constraints. The system can interpret these constraints
into an appropriate compiler code or computer language.
The system can then use the supplied constraints to generate
a set of test cases to test a decision table-based rules engine.

US 9,477,927 B2

5

The generated test cases can be run through the rules engine,
and the results can be analyzed, for example for the purposes
of bug testing, tolerance testing, error handling, or other
purposes. Creating a test generation specification can be
faster than manually generating test cases, and can be less
prone to error and omission.

FIG. 3 depicts a flowchart of a method of an illustrative
embodiment of a system for automatic test generation for
decision table based rules, generally designated 300. The
method 300 may include receiving a set of attribute con-
straints, at 302. For example, this may be in the form of a test
generation specification as shown in FIG. 2, in the form of
a specified path through a decision tree, as one or more
user-specified limitation on an attribute field, in another
form, or any combination thereof. The constraints may be
received at a computing system running instructions for an
automatic test generation system. The constraints may be
entered through a compiler interface.

The method 300 may include converting the constraints
into valid syntax, at 304. For example, a compiler interface
may receive the constraints in the form of natural language
syntax in the form of natural English sentences, in the form
of pseudo code, or in the form of compiler code or other
computer-executable format. The interface or automatic test
generation system may perform any necessary conversions
to change the entered constraints into computer-executable
form.

The method 300 may next include generating a data set
based on the constraints, at 306. For example, the system
may create a structured data set including numerous data
fields, which data set can be consumed by a decision
table-based rules engine to produce a result. Generating the
data set may include populating data fields from collected
data, for example from data stored in a database. The data
sets may also be generated based on data generation rules,
such as value limits and data types for various fields. For
example, data generation rules may include a permissible
value range for an integer attribute field, or correlations
between attributes, such as limiting zip code values based on
a “State” attribute. The data set may also be generated based
on a rule set of a rules engine. For example, the test
generation system may reference a set of decision points in
a rule set, so that the data set may be generated to follow a
specified decision path through the rule set. In some embodi-
ments, the data set may also be generated based on results
of a previous test of a rule set, so that particular decision
points receive additional testing.

The method 300 may then provide the generated data set
to the rules engine, at 308. The rules engine may produce a
set of outputs based on the results of the data set being run
through the rules engine. After receiving the results, the
method 300 may include determining whether to modify the
constraints based on the rules engine output, at 310. For
example, if particular points in a decision tree or rule set are
producing unexpected results, the constraints may be modi-
fied to focus on the decision points or rules in question.

If a decision is made to modify the constraints at 310, the
constraints may be accordingly modified at 312. The modi-
fied constraints may be fed into the test generation system as
inputs, and a new data set may be generated at 306. If a
decision is made not to modify the constraints based on the
rules engine output at 310, the method may end at 314.

In accordance with various embodiments, the methods
described herein may be implemented as one or more
software programs running on a computer processor or
controller. Dedicated hardware implementations including,
but not limited to, application specific integrated circuits,

30

40

45

50

55

60

65

6

programmable logic arrays, and other hardware devices can
likewise be constructed to implement the methods described
herein. Further, the methods described herein may be imple-
mented as a computer readable storage medium or device,
such as hardware components storing instructions that when
executed cause a processor to perform the methods. Instruc-
tions for performing the methods disclosed herein may also
be broadcast to a device for execution using computer
readable transmission media.

The illustrations of the embodiments described herein are
intended to provide a general understanding of the structure
of the various embodiments. The illustrations are not
intended to serve as a complete description of all of the
elements and features of apparatus and systems that utilize
the structures or methods described herein. Many other
embodiments may be apparent to those of skill in the art
upon reviewing the disclosure. Other embodiments may be
utilized and derived from the disclosure, such that structural
and logical substitutions and changes may be made without
departing from the scope of the disclosure. Moreover,
although specific embodiments have been illustrated and
described herein, it should be appreciated that any subse-
quent arrangement designed to achieve the same or similar
purpose may be substituted for the specific embodiments
shown.

This disclosure is intended to cover any and all subse-
quent adaptations or variations of various embodiments.
Combinations of the above embodiments, and other embodi-
ments not specifically described herein, will be apparent to
those of skill in the art upon reviewing the description.
Additionally, the illustrations are merely representational
and may not be drawn to scale. Certain proportions within
the illustrations may be exaggerated, while other proportions
may be reduced. Accordingly, the disclosure and the figures
are to be regarded as illustrative and not restrictive.

What is claimed is:
1. A memory device storing instructions that cause a
processor to perform a method comprising:
receiving one or more constraints for a set of data attri-
butes;
generating a structured data set of the data attributes
having values based on the one or more constraints,
including generating at least some of the data attributes
of the structured data set using random values; and
providing the structured data set to a decision table-based
rule set.
2. The memory device of claim 1, the method further
comprising:
analyzing the decision table-based rule set to determine
decision points where defined data attribute values
cause a branching in the decision table-based rule set
logic; and
generating the structured data set based on the decision
points.
3. The memory device of claim 1, the method further
comprising:
receiving an output result based on the structured data set
from the decision table-based rule set; and
generating a second structured data set based on the
output result.
4. The memory device of claim 1, the method further
comprising:
receiving the one or more constraints at a compiler
interface; and
converting the one or more constraints into a specified
computer-executable syntax.

US 9,477,927 B2

7

5. The memory device of claim 1, the method further
comprising:
generating the structured data set based on a set of data
generation rules including valid value ranges for the
data attributes.
6. The memory device of claim 1, the method further
comprising:
generating the structured data set using one or more sets
of collected data values.
7. The memory device of claim 1, the method further
comprising:
generating the structured data set based on a user-speci-
fied path through the decision table-based rule set.
8. The memory device of claim 1, the method further
comprising:
receiving user input to modify the structured data set.
9. The memory device of claim 1, the method further
comprising:
receiving the one or more constraints in the form of a test
generation specification which defines data structures
for the set of data attributes and direction on how to
populate the set of data attributes.
10. A method comprising:
automatically testing functionality, via a computer pro-
cessor, of a decision table-based rule set configured to
process data for a computing system, the testing includ-
ing:
receiving, at the computer processor, one or more
constraints indicating acceptable values for a set of
data attributes;
converting the constraints into computer-executable
syntax;
generating a structured data set of the data attributes
having values based on the computer-executable
syntax, at least some of the data attributes of the
structured data set generated using random values;
providing, via the computer processor, the structured
data set to the decision table-based rule set for
processing in order to test the decision table-based
rule set functionality with respect to the structured
data set; and
providing, via the computer processor, a result output
from the test.
11. The method of claim 10 further comprising:
analyzing the decision table-based rule set to determine
decision points where defined data attribute values
cause a branching in the decision table-based rule set
logic; and
generating the structured data set based on the decision
points.

10

15

20

25

30

35

40

45

8

12. The method of claim 10, further comprising:
receiving the one or more constraints at a compiler
interface; and
converting the one or more constraints into a specified
computer-executable syntax.
13. The method of claim 10, further comprising:
generating the structured data set based on a user-speci-
fied path through the decision table-based rule set.
14. An apparatus comprising:
a controller configured to:
receive one or more constraints defining permissible
values for a set of data attributes, the constraints
based on decision points of a decision table-based
rule set where defined data attribute values cause a
branching in the decision table-based rule set logic;
generate a structured data set of the data attributes
having values based on the one or more constraints;
test functionality of the decision table-based rule set by
providing the structured data set to the decision
table-based rule set to trigger selected branching
decision points; and
analyze an output result produced by the decision
table-based rule set in response to the structured data
set to determine the functionality.
15. The apparatus of claim 14, the controller further
configured to:
analyze the decision table-based rule set to determine the
decision points; and
generate the structured data set based on the decision
points.
16. The apparatus of claim 14, the controller further
configured to:
generate a second structured data set based on the output
result.
17. The apparatus of claim 14, the controller further
configured to:
receive the one or more constraints at a compiler inter-
face; and
convert the one or more constraints into a specified
computer-executable syntax.
18. The apparatus of claim 14, the controller further
configured to:
generate the structured data set based on a user-specified
path through the decision table-based rule set.
19. The apparatus of claim 14, the controller further
configured to:
generate the structured data set using random values.

#* #* #* #* #*

